

Mike Talbot Water Resources Engineer Emmons & Olivier Resources, Inc.

BBAE, Biosystems & Agricultural Engineering MS, Bioproducts & Biosystems Engineering University of Minnesota

Emmons & Olivier Resources, Inc. we care for the earth and its inhabitants

Look ma, no model!

Evaluation of a GIS-Based Flood Hazard Assessment in Rochester, Minnesota

Mike Talbot 56th International Conference on Water Management Modeling March 2nd, 2023

Emmons & Olivier Resources, Inc. we care for the earth and its inhabitants

Road Map

- Brief Overview of Flood Hazard and Flood Risk
- Description of a GIS-Based Flood Hazard Assessment
- Comparison with 2D Model Results

Article

Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study

Daniela Rincón¹, Usman T. Khan^{1,*} and Costas Armenakis²

- ¹ Department of Civil Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; drincon@yorku.ca
- ² Geomatics Engineering, Department of Earth & Space Science & Engineering, Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada; armenc@yorku.ca
- * Correspondence: usman.khan@lassonde.yorku.ca

Received: 30 June 2018; Accepted: 25 July 2018; Published: 27 July 2018

What is Flood Hazard?

Flood Hazard means...

"...the threat of an area being inundated by water due typically to excessive precipitation or obstructions to the natural flow." -Law Insider

A Flood Hazard Heuristic

Heuristic

"...proceeding to a solution by trial and error or by rules that are only loosely defined." –Oxford's English Dictionary

• See also: shortcut

Flood Hazard Component 1: Height

Flood Hazard Component 2: Distance

Flood Hazard Component 3: Slope

Flood Hazard Component 4: Land Cover

Why not just model it?

Hydrologic and Hydraulic Models

- Pros
 - Accurate
- Cons
 - Expensive to build
 - Time consuming to run
 - Spatially discrete

GIS

- Pros
 - Fast and inexpensive to generate
 - Uses commonly available data
 - Spatially continuous
- Cons
 - Approximate

Flood Hazard in GIS

Distance to Stream

- Lidar-derived DEM
- SAGA "Overland Flow Distance..." (Vertical)

Height Above Nearest Drainage

- Lidar-derived DEM
- SAGA "Overland Flow Distance..." (Horizontal)

Slope

- Lidar-derived DEM
- SAGA "Slope"

Land Cover

- Curve Number
 - SSURGO
 - NLCD

Flood Hazard in GIS

Criterion	Flood	Rincón et al.	Scenario Quantiles				
	Hazard	(2018)	Α	B	С	D	Ε
	5	< 2	< 1.16	< 0.26	< 0.26	<0.25	<0.25
Height Above	4	2 - 4	1.16 - 2.49	0.26 - 0.77	0.26 - 0.77	0.25 - 0.79	0.25 - 0.79
Nearest	3	4 - 6	2.49 - 4.30	0.77 - 1.37	0.77 - 1.37	0.79 - 1.42	0.79 - 1.42
Drainage (m)	2	6 - 8	4.30 - 6.97	1.37 - 2.45	1.37 - 2.45	1.42 - 2.50	1.42 - 2.50
	1	> 8	> 6.97	> 2.45	> 2.45	>2.50	>2.50
Distance to Stream (m)	5	< 100	< 100	< 24	< 24	<27	<27
	4	100 - 300	100 - 215	24 - 58	24 - 58	27 - 68	27 - 68
	3	300 - 500	215 - 339	58 - 98	58 - 98	68 - 114	68 - 114
	2	500 - 1000	339 - 506	98 - 150	98 - 150	114 - 174	114 - 174
	1	> 1000	> 506	> 150	> 150	>174	>174
Slope (degrees)	5	< 10	< 0.97	< 0.97	< 0.97	< 0.97	< 0.97
	4	10 - 20	0.97 - 1.45	0.97 - 1.45	0.97 - 1.45	0.97 - 1.45	0.97 - 1.45
	3	20 - 30	1.45 - 2.14	1.45 - 2.14	1.45 - 2.14	1.45 - 2.14	1.45 - 2.14
	2	30 - 50	2.14 - 3.38	2.14 - 3.38	2.14 - 3.38	2.14 - 3.38	2.14 - 3.38
	1	> 50	> 3.38	> 3.38	> 3.38	> 3.38	> 3.38
Curve Number	5	> 94	> 94	> 94	-	> 94	-
	4	86 - 94	86 - 94	86 - 94	-	86 - 94	-
	3	80 - 86	80 - 86	80 - 86	-	80 - 86	-
	2	74 - 80	74 - 80	74 - 80	-	74 - 80	-
	1	< 74	< 74	< 74	-	< 74	-
Percent Impervious	5	-	-	-	> 95	-	> 95
	4	-	-	-	90 - 95	-	90 - 95
	3	-	-	-	30 - 90	-	30 - 90
	2	-	-	-	0 - 30	-	0 - 30
	1	-	-	-	0	-	0

Study Area

Flood Hazard Index

Cascade Creek Integrated 1D-2D PCSWMM Model

51

755 Subcatchments, 24,690 acres 227 Storages 1,846 1D Junctions 17,180 2D Junctions

Cascade Creek 2D Domain

Comparison, 100-year 24-hour (Overall)

Comparison, 100-year 24-hour (Feature 1)

Comparison, 100-year 24-hour (Feature 2)

$J(A, B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$

Where:A = 2D Cells,MAXDEPTH > 0B = Flood Hazard > X,1 < X < 5 (optimized)

Comparison, 100-year 24-hour (Feature 2)

Flood Hazard Index

Comparison, 100-year 24-hour (Feature 1)

Precipitation Event	Feature	Optimal FHI	Jaccard's Coefficient
10-year, 24-hour	Overall	3.486	44.2%
10-year, 24-hour	Feature 1	3.426	58.6%
10-year, 24-hour	Feature 2	3.479	40.9%
25-year, 24-hour	Overall	3.426	50.3%
25-year, 24-hour	Feature 1	3.398	67.3%
25-year, 24-hour	Feature 2	3.423	46.4%
50-year, 24-hour	Overall	3.398	53.6%
50-year <i>,</i> 24-hour	Feature 1	3.364	69.8%
50-year, 24-hour	Feature 2	3.319	49.9%
100-year, 24-hour	Overall	3.320	56.2%
100-year, 24-hour	Feature 1	3.257	71.4%
100-year, 24-hour	Feature 2	3.313	52.8%
200-year, 24-hour	Overall	3.255	58.4%
200-year, 24-hour	Feature 1	3.275	73.0%
200-year, 24-hour	Feature 2	3.259	55.1%
500-year, 24-hour	Overall	3.255	60.4%
500-year, 24-hour	Feature 1	3.248	73.7%
500-year, 24-hour	Feature 2	3.258	57.3%

Conclusions

- Performed better in Feature 1 (rural)
 - Less influence of drainage infrastructure?
 - Fluvial vs pluvial?
 - Subcatchment resolution too low?
- Performed better for larger events
 - Drainage infrastructure increasingly overwhelmed?
 - Larger floodplain?
- Outstanding questions
 - Removing the storm sewers?
 - Weighting for depth of flow?
- Useful for planning and prioritization
- Not as useful for detailed analysis

Acknowledgments

Other key contributors to this work:
Camilla Correll
Sarah Voje
Paul Fritton
Bill Yu

Thank you!

Mike Talbot mtalbot@eorinc.com

visit us at: www.eorinc.com